Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Med Chem ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712838

RESUMO

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.

2.
Nano Lett ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726841

RESUMO

In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38668643

RESUMO

OBJECTIVES: To assess potential risk factors influencing diet outcomes after reconstruction of subtotal hypopharyngeal defects using free patch- or tube-shaped anterolateral thigh (ALT) fasciocutaneous flaps. STUDY DESIGN: Retrospective cohort study. SETTING: First-level referral hospital. METHODS: Between January 2011 and December 2020, we studied hypopharyngeal cancer patients who underwent the reconstruction of hypopharyngeal defects using free patch- or tube-shaped ALT fasciocutaneous flaps. The choice between patch- or tube-shaped ALT flaps depended on the defect's nature, favoring patch-shaped for subtotal defects and tube-shaped for circumferential defects. A restricted diet was characterized by a history of enterostomy or endoscopic esophageal dilation treatment postreconstruction. We analyzed patients with restricted diets at 1- and 3-year follow-up visits. RESULTS: Ninety-eight patients were enrolled; 39 patch-shaped flaps, and 59 tube-shaped flaps. No significances were noted in demographics, postoperative radiotherapy (RT) or chemotherapy, rates of free flap reoperation/salvage, or complications. However, a significant difference emerged in diet outcomes at the 1-year follow-up (P = .005). The rate of a restricted diet was 6.08 times higher in patients with tube-shaped flaps compared to patch-shaped flaps (95% confidence interval [CI]: 1.95-18.94). Stratifying based on postoperative RT revealed a 5.47 times higher rate of a restricted diet in tube-shaped flap recipients compared to patch-shaped flap recipients (95% CI: 1.44-20.48). No significances were observed in 5-year survival rates. CONCLUSION: Concerning postoperative RT, patch-shaped flaps exhibited a lower incidence of a restricted diet compared to tube-shaped flaps. Preservation of the posterior mucosa may play a crucial role in preventing RT-induced esophageal stricture.

4.
BMC Med Imaging ; 24(1): 92, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641591

RESUMO

BACKGROUND: The study aimed to develop and validate a deep learning-based Computer Aided Triage (CADt) algorithm for detecting pleural effusion in chest radiographs using an active learning (AL) framework. This is aimed at addressing the critical need for a clinical grade algorithm that can timely diagnose pleural effusion, which affects approximately 1.5 million people annually in the United States. METHODS: In this multisite study, 10,599 chest radiographs from 2006 to 2018 were retrospectively collected from an institution in Taiwan to train the deep learning algorithm. The AL framework utilized significantly reduced the need for expert annotations. For external validation, the algorithm was tested on a multisite dataset of 600 chest radiographs from 22 clinical sites in the United States and Taiwan, which were annotated by three U.S. board-certified radiologists. RESULTS: The CADt algorithm demonstrated high effectiveness in identifying pleural effusion, achieving a sensitivity of 0.95 (95% CI: [0.92, 0.97]) and a specificity of 0.97 (95% CI: [0.95, 0.99]). The area under the receiver operating characteristic curve (AUC) was 0.97 (95% DeLong's CI: [0.95, 0.99]). Subgroup analyses showed that the algorithm maintained robust performance across various demographics and clinical settings. CONCLUSION: This study presents a novel approach in developing clinical grade CADt solutions for the diagnosis of pleural effusion. The AL-based CADt algorithm not only achieved high accuracy in detecting pleural effusion but also significantly reduced the workload required for clinical experts in annotating medical data. This method enhances the feasibility of employing advanced technological solutions for prompt and accurate diagnosis in medical settings.


Assuntos
Aprendizado Profundo , Derrame Pleural , Humanos , Radiografia Torácica/métodos , Estudos Retrospectivos , Radiografia , Derrame Pleural/diagnóstico por imagem
5.
Natl Sci Rev ; 11(5): nwad280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577663

RESUMO

Fast optical modulation of nanoplasmonics is fundamental for on-chip integration of all-optical devices. Although various strategies have been proposed for dynamic modulation of surface plasmons, critical issues of device compatibility and extremely low efficiency in the visible spectrum hamper the application of optoplasmonic nanochips. Here we establish an optoplasmonic system based on Au@Cu2-xS hybrid core-shell nanoparticles. The optical excitation of hot electrons and their charge transfer to the semiconductor coating (Cu2-xS) lead to lowered electron density of Au, which results in the red shift of the localized surface plasmon resonance. The hot electrons can also transport through the Cu2-xS layer to the metal substrate, which increases the conductance of the nanogap. As such, the coupled gap plasmon blue-shifts with a magnitude of up to ∼15 nm, depending on the excitation power and the thickness of the coatings, which agrees with numerical simulations. All of this optoelectronic tuning process is highly reversible, controllable and fast with a modulated laser beam, which is highly compatible and sufficiently useful for on-chip integration of nanophotonic devices.

6.
J Cancer Res Ther ; 20(2): 555-562, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687925

RESUMO

INTRODUCTION: There are emerging but inconsistent evidences about anti-epileptic drugs (AEDs) as radio- or chemo-sensitizers to improve survival in glioblastoma patients. We conducted a nationwide population-based study to evaluate the impact of concurrent AED during post-operative chemo-radiotherapy on outcome. MATERIAL AND METHODS: A total of 1057 glioblastoma patients were identified by National Health Insurance Research Database and Cancer Registry in 2008-2015. Eligible criteria included those receiving surgery, adjuvant radiotherapy and temozolomide, and without other cancer diagnoses. Survival between patients taking concurrent AED for 14 days or more during chemo-radiotherapy (AED group) and those who did not (non-AED group) were compared, and subgroup analyses for those with valproic acid (VPA), levetiracetam (LEV), or phenytoin were performed. Multivariate analyses were used to adjust for confounding factors. RESULTS: There were 642 patients in the AED group, whereas 415 in the non-AED group. The demographic data was balanced except trend of more patients in the AED group had previous drug history of AEDs (22.6% vs. 18%, P 0.078). Overall, the AED group had significantly increased risk of mortality (HR = 1.18, P 0.016) compared to the non-AED group. Besides, an adverse dose-dependent relationship on survival was also demonstrated in the AED group (HR = 1.118, P 0.0003). In subgroup analyses, the significant detrimental effect was demonstrated in VPA group (HR = 1.29,P 0.0002), but not in LEV (HR = 1.18, P 0.079) and phenytoin (HR = 0.98, P 0.862). CONCLUSIONS: Improved survival was not observed in patients with concurrent AEDs during chemo-radiotherapy. Our real-world data did not support prophylactic use of AEDs for glioblastoma patients.


Assuntos
Anticonvulsivantes , Neoplasias Encefálicas , Glioblastoma , Humanos , Feminino , Anticonvulsivantes/uso terapêutico , Masculino , Glioblastoma/mortalidade , Glioblastoma/terapia , Pessoa de Meia-Idade , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Idoso , Quimiorradioterapia Adjuvante/métodos , Quimiorradioterapia Adjuvante/estatística & dados numéricos , Adulto , Estudos de Coortes , Fenitoína/uso terapêutico , Fenitoína/administração & dosagem , Sistema de Registros/estatística & dados numéricos , Levetiracetam/uso terapêutico , Ácido Valproico/uso terapêutico
7.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544212

RESUMO

With the development of the mobile network communication industry, 5G has been widely used in the consumer market, and the application of 5G technology for indoor positioning has emerged. Like most indoor positioning techniques, the propagation of 5G signals in indoor spaces is affected by noise, multipath propagation interference, installation errors, and other factors, leading to errors in 5G indoor positioning. This paper aims to address these issues by first constructing a 5G indoor positioning dataset and analyzing the characteristics of 5G positioning errors. Subsequently, we propose a 5G Positioning Error Correction Neural Network (5G-PECNN) based on neural networks. This network employs a multi-level fusion network structure designed to adapt to the error characteristics of 5G through adaptive gradient descent. Experimental validation demonstrates that the algorithm proposed in this paper achieves superior error correction within the error region, significantly outperforming traditional neural networks.

8.
Nat Commun ; 15(1): 2324, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485961

RESUMO

Mixed tin-lead perovskite solar cells have driven a lot of passion for research because of their vital role in all-perovskite tandem solar cells, which hold the potential for achieving higher efficiencies compared to single-junction counterparts. However, the pronounced disparity in crystallization processes between tin-based perovskites and lead-based perovskites, coupled with the easy Sn2+ oxidation, has long been a dominant factor contributing to high defect densities. In this study, we propose a multidimensional strategy to achieve efficient tin-lead perovskite solar cells by employing a functional N-(carboxypheny)guanidine hydrochloride molecule. The tailored N-(carboxypheny)guanidine hydrochloride molecule plays a pivotal role in manipulating the crystallization and grain growth of tin-lead perovskites, while also serving as a preservative to effectively inhibit Sn2+ oxidation, owing to the strong binding between N-(carboxypheny)guanidine hydrochloride and tin (II) iodide and the elevated energy barriers for oxidation. Consequently, single-junction tin-lead cells exhibit a stabilized power conversion efficiency of 23.11% and can maintain 97.45% of their initial value even after 3500 h of shelf storage in an inert atmosphere without encapsulation. We further integrate tin-lead perovskites into two-terminal monolithic all-perovskite tandem cells, delivering a certified efficiency of 27.35%.

9.
Adv Mater ; : e2310080, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479011

RESUMO

Modifying perovskite surface using various organic ammonium halide cations has proven to be an effective approach for enhancing the overall performance of perovskite solar cells. Nevertheless, the impact of the structural symmetry of these ammonium halide cations on perovskite interface termination has remained uncertain. Here, this work investigates the influence of symmetry on the performance of the devices, using molecules based on symmetrical bis(2-chloroethyl)ammonium cation (B(CE)A+ ) and asymmetrical 2-chloroethylammonium cation (CEA+ ) as interface layers between the perovskite and hole transport layer. These results reveal that the symmetrical B(CE)A+ cations lead to a more homogeneous surface potential and more comprehensive chelation with uncoordinated Pb2+ compared to the asymmetrical cations, resulting in a more favorable energy band alignment and strengthened defect healing. This strategy, leveraging the spatial geometrical symmetry of the interface cations, promotes hole carrier extraction between functional layers and reduces nonradiative recombination on the perovskite surface. Consequently, perovskite solar cells processed with the symmetrical B(CE)A+ cations achieve a power conversion efficiency (PCE) of 25.60% and retain ≈91% of their initial PCE after 500 h of maximum power point operation. This work highlights the significant benefits of utilizing structurally symmetrical cations in promoting the performance and stability of perovskite solar cells.

10.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408023

RESUMO

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

11.
Light Sci Appl ; 12(1): 295, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057305

RESUMO

Various exciton species in transition metal dichalcogenides (TMDs), such as neutral excitons, trions (charged excitons), dark excitons, and biexcitons, have been individually discovered with distinct light-matter interactions. In terms of valley-spin locked band structures and electron-hole configurations, these exciton species demonstrate flexible control of emission light with degrees of freedom (DOFs) such as intensity, polarization, frequency, and dynamics. However, it remains elusive to fully manipulate different exciton species on demand for practical photonic applications. Here, we investigate the contrasting light-matter interactions to control multiple DOFs of emission light in a hybrid monolayer WSe2-Ag nanowire (NW) structure by taking advantage of various exciton species. These excitons, including trions, dark excitons, and biexcitons, are found to couple independently with propagating surface plasmon polaritons (SPPs) of Ag NW in quite different ways, thanks to the orientations of transition dipoles. Consistent with the simulations, the dark excitons and dark trions show extremely high coupling efficiency with SPPs, while the trions demonstrate directional chiral-coupling features. This study presents a crucial step towards the ultimate goal of exploiting the comprehensive spectrum of TMD excitons for optical information processing and quantum optics.

12.
Huan Jing Ke Xue ; 44(12): 6598-6609, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098387

RESUMO

In recent years, the management of atmospheric fine particulate matter(PM2.5) pollution in China has achieved staged success, but ozone(O3) pollution has increased rapidly. Detection and source localization of atmospheric pollutants is the basis and key to controlling the combined pollution of PM2.5 and O3. With the rapid development of UAV technology and sensor technology, air pollution detection based on UAV platforms can effectively obtain the structural characteristics of PM2.5 and O3 near the surface and accurately trace the source of air pollution events by applying the computer algorithms, with the characteristics of high timeliness, flexibility, and spatial and temporal resolution. This will help researchers understand the distribution, changes, and sources of regional pollutants and provide a scientific basis for the synergistic control of combined air pollution. This study reviewed the traditional air pollution detection methods, summarized the types of UAV platforms and detection instruments commonly used in pollution detection, concluded the applications of UAV-based PM2.5 and O3 pollution detection and the algorithms of pollution source localization, and discussed the future trends of UAV-based air pollution detection.

13.
Huan Jing Ke Xue ; 44(11): 5933-5945, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973078

RESUMO

To understand the changes in the components of volatile organic compounds(VOCs), the contribution proportion of each component to ozone, and the VOCs sources, we monitored the VOCs for a year in Lishui. The results showed that theρ(TVOC) was 223.46 µg·m-3, ρ(alkanes) was 49.45 µg·m-3(22.3%), ρ(OVOCs) was 50.63 µg·m-3(22.66%), ρ(halogenated hydrocarbons) was 64.73 µg·m-3(28.95%), ρ(aromatic hydrocarbons) was 35.46 µg·m-3(15.87%), ρ(alkenes) was 18.26 µg·m-3(8.19%), and ρ(others) was 4.9 µg·m-3(2.2%). ρ(TVOC) was higher in summer(263.75 µg·m-3) and lower in winter(187.2 µg·m-3), with 246.11 µg·m-3 in spring and 204.77 µg·m-3 in autumn. The daily concentration of VOCs showed two peaks, one from 9:00 to 10:00 and another from 14:00 to 15:00, and the high concentration was mainly found in the urban main road area with dense human activities. The ozone formation potential(OFP) was 278.92 µg·m-3, and those of olefin and aromatic hydrocarbon were 114.47 µg·m-3(41.1%) and 113.49 µg·m-3(40.8%), respectively, contributing over 80%, which was an important precursor of ozone. On the other hand, the ratio of characteristic compounds to toluene/benzene(T/B) was 4.13, which indicated that it was greatly affected by the solvent usage. In the end, the results of positive matrix factorization(PMF) source apportionment showed that VOCs mainly came from solvent usage, industrial production, and traffic emissions. The VOCs pollution had a great influence on ozone, so it was necessary to strengthen the treatment of industrial production, solvent usages, and traffic emissions.

14.
Redox Biol ; 68: 102961, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38007983

RESUMO

BACKGROUND: Declining beneficial cardiovascular actions of estradiol (E2) have been associated with disproportionate susceptibility to takotsubo syndrome (TTS) in postmenopausal women. However, the underlying mechanisms between E2 and this marked disproportion remain unclear. SmgGDS (small GTP-binding protein GDP dissociation stimulator), as a key modulator of cardiovascular disease, plays protective roles in reducing oxidative stress and exerts pleiotropic effects of statins. Whether SmgGDS levels are influenced by E2 status and the effect of SmgGDS on sex differences in TTS are poorly understood. METHODS: Clinical data were reviewed from TTS inpatients. Echocardiography, immunofluorescence, and immunohistochemistry were performed together with expression analysis to uncover phenotypic and mechanism changes in sex differences in TTS-like wild-type (WT) and SmgGDS± mice. HL-1 cardiomyocytes were used to further examine and validate molecular mechanisms. RESULTS: In 14 TTS inpatients, TTS had a higher incidence in postmenopausal women as compared to premenopausal women and men. In murine TTS, female WT mice exhibited higher cardiac SmgGDS levels than male WT mice. Ovariectomy reduced SmgGDS expression in female WT mice similar to that observed in male mice, whereas E2 replacement in these ovariectomized (OVX) female mice reversed this effect. The physiological importance of this sex-specific E2-mediated SmgGDS response is underscored by the disparity in cardiac adaptation to isoproterenol (ISO) stimulation between both sexes of WT mice. E2-mediated SmgGDS induction conferred female protection against TTS-like acute cardiac injury involving ferritinophagy-mediated ferroptosis. No such cardioprotection was observed in male WT mice and OVX female. A causal role for SmgGDS in this sex-specific cardioprotective adaptation was indicated, inasmuch as SmgGDS deficiency abolished E2-modulated cardioprotection against ferritinophagy and aggravates TTS progression in both sexes. Consistently, knockdown of SmgGDS in HL-1 cardiomyocytes exacerbated ferroptosis in a ferritinophagy-dependent manner and abrogated the protective role of E2 against ferritinophagy. Mechanistically, our findings revealed that SmgGDS regulated E2-dependent cardioprotective effects via AMPK/mTOR signaling pathway. SmgGDS deficiency abolished E2-conferred protection against ferritinophagy through activating AMPK/mTOR pathway, while treatment with recombinant SmgGDS in HL-1 cells significantly mitigated this pathway-associated ferritinophagy activity. CONCLUSIONS: These results demonstrate that SmgGDS is a central mediator of E2-conferred female cardioprotection against ferritinophagy-mediated ferroptosis in TTS.


Assuntos
Ferroptose , Cardiomiopatia de Takotsubo , Humanos , Feminino , Masculino , Camundongos , Animais , Caracteres Sexuais , Estradiol/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Ferroptose/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Nature ; 624(7990): 69-73, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938775

RESUMO

All-perovskite tandem solar cells hold great promise in surpassing the Shockley-Queisser limit for single-junction solar cells1-3. However, the practical use of these cells is currently hampered by the subpar performance and stability issues associated with mixed tin-lead (Sn-Pb) narrow-bandgap perovskite subcells in all-perovskite tandems4-7. In this study, we focus on the narrow-bandgap subcells and develop an all-in-one doping strategy for them. We introduce aspartate hydrochloride (AspCl) into both the bottom poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) and bulk perovskite layers, followed by another AspCl posttreatment. We show that a single AspCl additive can effectively passivate defects, reduce Sn4+ impurities and shift the Fermi energy level. Additionally, the strong molecular bonding of AspCl-Sn/Pb iodide and AspCl-AspCl can strengthen the structure and thereby improve the stability of Sn-Pb perovskites. Ultimately, the implementation of AspCl doping in Sn-Pb perovskite solar cells yielded power conversion efficiencies of 22.46% for single-junction cells and 27.84% (27.62% stabilized and 27.34% certified) for tandems with 95% retention after being stored in an N2-filled glovebox for 2,000 h. These results suggest that all-in-one AspCl doping is a favourable strategy for enhancing the efficiency and stability of single-junction Sn-Pb perovskite solar cells and their tandems.

16.
Front Optoelectron ; 16(1): 25, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747592

RESUMO

In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr3 and CsPbBr3 single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr3 increases almost 8 times compared to that in MAPbBr3. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.

17.
Am J Cancer Res ; 13(8): 3531-3546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693132

RESUMO

Longitudinal studies have indicated the pivotal role of natural killer cells (NKs) in the elimination of certain infections and malignancies. Currently, perinatal blood (PB) and cord blood (CB) have been considered with promising prospective for autogenous and allogeneic NKs transplantation, yet the similarities and differences at the biological and molecular levels are largely obscure. We isolated mononuclear cells (MNCs) from PB and CB, and compared the biological phenotypes of resident NKs by flow cytometry and cell counting. Then, we turned to our well-established "3ILs" strategy and co-culture for NK cell activation and cytotoxicity analyses, respectively. Finally, with the aid of transcriptomic analyses, we further dissected the signatures of PB-NKs and CB-NKs. CB-NKs revealed superiority in cellular vitality over PB-NKs, together with variations in subpopulations. CB-NKs showed higher cytotoxicity over PB-NKs against K562 cells. Furthermore, we found both NKs revealed multifaceted conservations and differences in gene expression profiling and genetic variations, together with gene subsets and signaling pathway. Collectively, both NKs revealed multifaceted similarities and diverse variations at the cellular and transcriptomic levels. Our findings would benefit the further exploration of the biological and transcriptomic properties of CB-NKs and PB-NKs, together with the development of NK cell-based cytotherapy.

18.
Eur Heart J ; 44(45): 4796-4807, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37585426

RESUMO

BACKGROUND AND AIMS: Patients with left-sided breast cancer receive a higher mean heart dose (MHD) after radiotherapy, with subsequent risk of ischaemic heart disease. However, the optimum dosimetric predictor among cardiac substructures has not yet been determined. METHODS AND RESULTS: This study retrospectively reviewed 2158 women with breast cancer receiving adjuvant radiotherapy. The primary endpoint was a major ischaemic event. The dose-volume parameters of each delineated cardiac substructure were calculated. The risk factors for major ischaemic events and the association between MHD and major ischaemic events were analysed by Cox regression. The optimum dose-volume predictors among cardiac substructures were explored in multivariable models by comparing performance metrics of each model. At a median follow-up of 7.9 years (interquartile range 5.6-10.8 years), 89 patients developed major ischaemic events. The cumulative incidence rate of major ischaemic events was significantly higher in left-sided disease (P = 0.044). Overall, MHD increased the risk of major ischaemic events by 6.2% per Gy (hazard ratio 1.062, 95% confidence interval 1.01-1.12; P = 0.012). The model containing the volume of the left ventricle receiving 25 Gy (LV V25) with the cut-point of 4% presented with the best goodness of fit and discrimination performance in left-sided breast cancer. Age, chronic kidney disease, and hyperlipidaemia were also significant risk factors. CONCLUSION: Risk of major ischaemic events exist in the era of modern radiotherapy. LV V25 ≥ 4% appeared to be the optimum parameter and was superior to MHD in predicting major ischaemic events. This dose constraint could aid in achieving better heart protection in breast cancer radiotherapy, though a further validation study is warranted.


Assuntos
Neoplasias da Mama , Neoplasias Unilaterais da Mama , Feminino , Humanos , Neoplasias Unilaterais da Mama/radioterapia , Estudos Retrospectivos , Neoplasias da Mama/radioterapia , Dosagem Radioterapêutica , Coração , Doses de Radiação
19.
Am J Cancer Res ; 13(5): 2087-2103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293160

RESUMO

Longitudinal studies have highlighted allogeneic natural killer (NK) cell-based cytotherapy for cancer immunosurveillance and immunotherapy, yet the deficiency of systematic and detailed comparison of NK cells from candidate sources including umbilical cord blood (UC) and bone marrow (BM) largely hinders the large-scale application. Herein, we isolated resident NK cells (rUC-NK, rBM-NK) from mononuclear cells (MNC), and analyzed the corresponding expanded NK cell counterparts (eUC-NK, eBM-NK). Then, the eUC-NK and eBM-NK were turned to multifaceted bioinformatics from the aspects of gene expression profiling and genetic variations. The percentages of total or activated NK cells in rBM-NK group were approximate 2-fold higher over those in the rUC-NK group, respectively. Instead, the proportion of total NK cells in eUC-NK was higher than that in the eBM-NK group, and in particular, the CD25+ memory-like NK cell subset. Furthermore, eUC-NK and eBM-NK manifested multidimensional similarities and diversities in gene expression pattern and genetic spectrum, whereas both eUC-NK and eBM-NK exhibited effective tumor killing capacity. Collectively, we dissected the cellular and transcriptomic signatures of NK cells generated from UC-MNC and BM-MNC, which supplied new literature for further exploring the characteristics of the indicated NK cells and would benefit the clinical application for cancer immunotherapy in future.

20.
Adv Mater ; 35(35): e2302161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37168009

RESUMO

Lead halide perovskites have shown exceptional performance in light-emitting devices (PeLEDs), particularly in producing significant electroluminescence in sky-blue to near-infrared wavelengths. However, PeLEDs emitting pure-blue light at 465-475 nm are still not satisfactory. Herein, efficient and stable pure-blue PeLEDs are reported by controlling phase distribution, passivation of defects, as well as surface modifications using multifunctional phenylethylammonium trifluoroacetate (PEATFA) in reduced-dimensional p-F-PEA2 Csn-1 Pbn (Br0.55 Cl0.45 )3n+1 polycrystalline perovskite films. Compared with 4-fluorophenylethylammonium (p-F-PEA+ ) in the pristine films, phenylethylammonium (PEA+ ) has lower adsorption energy while interacting with perovskites, resulting in large-n low-dimensional perovskites, which can greatly facilitate charge transport within the low-dimensional perovskite films. The interaction between the CO group in trifluoroacetate (TFA- ) and perovskites significantly reduces defects in the perovskite films. Additionally, the electron-giving CF3 group in TFA- uplifts surface potential in the films, resulting in smooth electronic injection in devices. The multifunctional additive strategy leads to elevated radiative recombination and efficient carrier transport in the films and devices. As a result, the devices exhibit a maximum external quantum efficiency (EQE) of 11.87% at 468 nm with stable spectral output, the highest reported to date for pure-blue PeLEDs. Thus, this study extends the way for high-efficiency pure-blue LED with perovskite polycrystal films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA